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Dependent types and formal synthesis

By F. K. HANNA AxXD N. DAECHE
Electronic Engineering Laboratories, University of Kent, Canterbury CT2 7NT, UK.

The relative advantages offered by the use of dependent types (rather than
polymorphic ones) in a higher-order logic used for reasoning about digital systems
are explored. Dependent types and subtypes are shown to provide an effective means
of expressing the bounded, parametrized types typically encountered in this field.
Heuristic methods can be used to minimize problems arising from the loss of
decidable type-checking.

A second topic discussed is formal synthesis, an approach to design in which the
activities of behavioural synthesis and of formal verification are combined. The
starting point is a behavioural specification, the end result is a specification of an
implementation together with a proof of its correctness.

THE ROYAL
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1. Introduction

Typed higher-order logic has been shown to be, from many points of view, a most
effective formalism for describing and formally reasoning about digital systems
(Gordon 1986; Hanna & Daeche 1986; Melham 1987; Joyce 1988). One area where
some difficulty is experienced, however, is in the inability of ordinary type structures
(that is, those built on the ordinary cartesian product x and function space —
operators) to capture with precision many of the bounded parametrized types
informally used by the digital designer. Another area where difficulties are
experienced is in managing, even with computational assistance, the sheer
complexity of formally verifying realistically sized systems. In this paper we address
these two problems in turn. To overcome the first we propose the use of dependent
types, a natural generalization of ordinary types. To alleviate the second, we propose
an approach named formal synthesis in which the activities of behavioural synthesis
and of formal verification are combined.
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2. Dependent types

A

The digital designer works at a level of abstraction close to the physical world. As
a result, many of the signals dealt with are bounded (since each one is an abstraction
of a finite number of distinguishable physical states) or are parametrized (since
silicon real estate is a scarce resource and hence word lengths tend to be tailored to
specific requirements). Consider for example the types needed to describe the signals
at the ports of a multiplexer ; the ‘output’ port carries a signal of type bit (a bounded
subrange of the natural numbers), the ‘select’ port carries one of type n-bit word and
the ‘input’ port carries one of type 2”-bit word. It is important that a formalism for
describing and reasoning about digital systems is able to express and manipulate
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122 F. K. Hanna and N. Daeche

types like these fluently. We have found that the so-called dependent types (that
feature in Martin-Lof’s intuitionistic type theory (Martin-Lof 1984)) fill this role
admirably ; they are soundly based in mathematical logic and yet are natural and
intuitive to use. Veritas is a design logic (that is, a logic specifically intended for
supporting formal design methods) that incorporates such types. In the following
sections we will be illustrating the properties and uses of dependent types by
developing (in Veritas) some aspects of number theory and some behavioural
specifications for typical digital devices.

The main features of Veritas, briefly stated, are the following.

1. It is a typed, higher-order logic (Enderton 1972). Its rules of inference are
classical (i.e. not intuitionistic) and its form is a sequent calculus.

2. It provides the following kinds of types. (i) Primitive types: the type bool of
propositional truth values (frue and false) and a series of type universes U0, U1, ... (in
effect, types of types). (ii) Recursive types (‘datatypes’), on which functions may be
defined by primitive recursion. (iii) Subtypes. (iv) Dependent X and II types (these
are a natural generalization of ordinary x and — types).

3. Terms do not have unique types; rather, particular term-type combinations
(‘judgements’, in Martin-Lof’s terminology) are inferred to be well formed.

4. Types are themselves terms and thus the ordinary term constructors
(application, abstraction, etc.) may be used equally on types as on ordinary terms.

(A fuller discussion of the design rationale of the logic may be found in Hanna
et al. (1990).)

The logic has been computationally implemented by embedding it as a collection
of abstract types in a programming language along the general lines of Edinburgh
LCF (Gordon et al. 1979). The notation used throughout this paper is the Veritas-90
version of the logic and is identical to that which the computational implementation
of the logic both accepts and generates.

(@) Datatypes and primitive recursion

We begin our description of the type structure of Veritas by considering datatypes
and primitive recursion. Datatype declarations are used to introduce new types
together with their constructors. For example, the declaration :

datatype colour = red | green | blue

introduces a type colour having exactly three elements.
The natural numbers 0, 1, 2,..., may be introduced by a recursive datatype:

operator {' post} datatype nat = 0| nat’.

This introduces the type nat together with its two constructors 0 and prime (here
defined as a postfixed operator). The latter constructor is known as the successor
function and is of type mat->nat. Using these constructors, the first few natural
numbers may be defined :

1=0;, 251, 3=2.
Functions on datatypes are defined by primitive recursion (pRr). Since, when

written directly in their low-level form, pr terms have a somewhat rebarbative
appearance, the language provides an alternative high-level form in which they may

Phil. Trans. R. Soc. Lond. A (1992)
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Dependent types and formal synthesis 123
be expressed. For example, a typical Pr function definition on nat may be written in
high-level form as

define even by

even 0 = true|

even n' = —(even n)
end.

(Read as: even is defined as the function that maps 0 to true and that maps »n’ to the
complement (‘=’) of the value of even n.) We note, however, that this high level form
is just an alternative presentation of the actual low-level PR form, which in this case
is

even = recurse lrue| (An:nat. Ab:bool. ~b)end.

The usual arithmetic operators on nat are easily defined ; we give a few examples.
The addition function is

define {+} by n+0 =n|n+m’ = (n+m) end.
The predecessor function (the left inverse of the successor function) is
define pred by pred 0 = 0| pred n’ = n end.
The ‘proper subtraction’ function (—~) and the comparison predicate (<) are:
define {—} by n—-0=n|n —m" = pred (n — m)end;
operator {<}inn < m= (n—m)=0.
Notice that all functions defined in the language are, by construction, total (that
is, they are defined for all values of their arguments). This indicates, therefore, that

it would be impossible to construct a definition for a function like division on the
natural numbers since division by 0 is undefined.

(b) Subtypes

A subtype of a type is defined by giving the characteristic predicate that specifies
membership of the subtype. For instance, the type nat* comprising the positive
natural numbers may be defined by

natt = {n:nat|n > 0}

Whereas with a datatype it is immediately apparent which terms belong to it, with
a subtype it is necessary to infer membership by showing that the term satisfies the
characteristic predicate of the subtype. Consider for instance the term 2+2; by
construction, it is & member of the type nat. However, by demonstrating the theorem
F(2+2) > 0 it may be inferred that it is also a member of the type nat*.

A typical application for the type nat® is in specifying a type for the division
function div:nat—nat™ —nat. By constraining its second argument to range only
over non-zero numbers, the function can be well defined over its entire domain.

Since types are terms, type constructing functions taking ordinary terms as their
arguments may be defined. For example, consider the function N defined by

N n={m:nat|m < n}.

This function takes a number n and yields the subtype of nat containing numbers less
than n. For instance, the type N 3 comprises the numbers 0, 1 and 2.
The type constructor N nicely illustrates two features of the logic. Firstly, since it

Phil. Trans. R. Soc. Lond. A (1992)

6-2


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

124 F. K. Hanna and N. Daeche

is itself a term, it has its own type; this is N:nat — UO (recollect that U0 is the type
of (small) types). Secondly, it shows that types may be empty as, for instance, is the
type N O —in ordinary typed predicate calculus, all types are deemed to be non-
empty.
(¢) Dependent types

Consider the function mod (modulo) and in particular, what type it ought to be
given. It could be given the same type as the function div (above) was given; this
would guarantee that it was well defined over its entire domain. However, it could
with advantage be given the dependent type:

mod :nat — [n:nat*] >N n.

(Read as: mod takes an argument of type nat and then an argument n of type nat*
and it yields a result of type N n.) A type like this is called ‘dependent’ since the type
of the range of the function depends upon the value of its arguments. For example,
the type of the term mod m 3 is N 3. In many contexts information like this is almost
as useful as the value itself of a term.

The parameter n in the above dependent type is a bound variable. An alternative
way of writing dependent types is to use a prefix binder notation. For example, a
dependent type like [n:nat*]— N n may be written as IIn:nat*. N n (where ‘Il is the
binder). Such types are thus often called II-types. It is easy to see that ordinary
function (‘—’) types are simply a special case of II-types in which the binding is
vacuous. For instance, the type nat - bool may equally be written as Iln:nat. bool.

Just as — -types may be generalized to II-types, so also may x-types (cartesian
product types) be generalized to X-types. For instance, the type [n:nat]xN n
(alternatively written n:nat. N n) comprises all pairs whose first component # is of
type nat and whose second component is of type N n. For example, a pair like (2, 0)
belongs to this type whereas one like (2,3) does not.

As a significant example of dependent types and subtypes, consider a primitive
recursive definition for the functions div and mod discussed above. Since these two
functions are closely related, it is convenient to merge them into a single function
(named ‘//’, as a binary operator) of type:

{//}:nat —>[n nat*]>nat xN n
such that the value of @ // b is the pair (div « b), (mod a b). Here is the definition:
define {//} :nat— [n:nat*]—nat x N n by
0//n=10,0)]
m' //n=1let (qg,r) =m//nin
if v = n then (¢, 0) else (¢, ")
end

(Read as: ‘//’ is a binary operator (of the specified dependent type) defined (by
primitive recursion) such that the value of 0 //0 is (0,0), and the value of m" // n is
defined in terms of the pair (q,7) (the quotient and remainder of m //n) either as
(q,7") or (if this would overflow) as (¢"0).)

This is, in fact, quite a subtle definition and it repays detailed study. For example,
to take just one point, consider what would happen if the function had instead been
given the less restrictive type

nat — [n:nat] —nat XN n

Phil. Trans. R. Soc. Lond. A (1992)
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Dependent types and formal synthesis 125

(i.e. so that division by zero was not excluded). In that case it would not be possible
to establish that the term (0,0) in the definition was of type nat x N n (as it is
required to be) since if n took on the value 0 (which it would no longer be excluded
from doing) the type N % would be empty. Thus the overall definition would fail to
be well typed.

3. Specifications of digital systems

We now move on to discuss the application of the dependent types, subtypes and
datatypes of Veritas to the specification of digital systems. It is our aim to show that
such specifications can be both very precise and yet intuitively natural.

Digital systems, for the most part, operate on bits and on fixed length sequences
of bits termed words. The natural choice for a type to represent bits is bit = N 2. For
representing n-bit words, however, several choices are possible. One way is as a
mapping from N # (the index type) to bit. For this, a type-constructing function W
may be defined:

W n= (N n)->bit

so that words of length m are represented by the type W m. Using W, a type byte for
representing 8-bit words (bytes) may be defined as byte = W 8. Then, if B:byte is a
particular byte, its individual bits may be accessed by functional application, thus:
B 17, B 6,...,B 0. Following conventional mathematical practice, Veritas treats
subscripting as denoting application and so the same terms may also be written as
B,, By, ..., B,. References outside the index range N 8 are, of course, impossible even
to express since such terms (for example, Bg) are not well typed.

A very common operation on words is selecting subwords. The following function

select:[n:nat]—>W n->[i:N n]->[j:N(n —1) =W j]
defined by
select w1 j k=w (i+k)

carries out this operation. It takes a word-length n, a word w of that length, an index
¢ into that word, a subword length j and it yields a word of length j. For instance,
the term selecty B 4 2, of type W 2, describes the two-bit subword comprising bits
B, and B; of the original word. Notice carefully how dependent subtypes are used to
constrain the allowable ranges of the various arguments; the type discipline of the
language prevents badly defined subwords from being expressed.

(@) Binary numerals

In many cases, words are used to represent binary numerals. The valuation
function, wal, for such numerals is defined by :

define val:[n:nat]>W n-—>N (21 n)by
val 0 w = 0|
val m" w = (24tm) xw,, +val m w
end

(Read as: The function val takes a number »n (the word length), then an n-bit word
and yields a result of type N 2”. The value of a zero-length word is zero; the value
of an (m+1)-bit word is 2™ times the values of its m.s.b. plus the value of the
remaining m-bit word.)

Phil. Trans. R. Soc. Lond. A (1992)
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126 F. K. Hanna and N. Daeche

There are two interesting features about this definition. Firstly, notice how the
type of wal explicitly expresses the relation between word length and value —
information often relied upon by the designer when intuitively justifying the
correctness of a design. Secondly, notice that val is an isomorphism; two n-bit
numerals are equal if and only if their values are equal; that is

Vn:nat; A, B:W n.
(A =B)=(val, A =val, B).
This useful relation arises because the indexing type of numerals is limited to a
subrange of nat. Had the function W instead been defined as W n = nat - bit, then
equality of numbers would not entail equality of their corresponding n-bit numerals.
(b) Alternative representation for words

Although from many points of view the representation of binary numerals given
above is very effective, it does suffer from the shortcoming that defining numeric
literals is awkward. For instance, a definition of the 4-bit binary numeral for twelve
(i.e. 1100,) in this representation would be:

TWELVE = Xi:N 4. if 1 =2Vi=3 then 1 else 0.

An alternative representation that overcomes this problem is instead to represent
binary numerals as tuples (formed by iterated pairing). For this, first introduce a
singleton datatype datatype binary = Bin (that will be used to represent zero-length
tuples) and then define a type-constructing function 7' as

define 7":nat > U0 by T 0= binary|T n' =bitxT n end.
With this definition, a type like, for example, 7' 4, is equal to
bt x bit x bit x bit x binary
and numeric literals of this type are easily written, as, for example,
TWELVE =1, 1, 0, 0, Bin.

This definition of the parametrized type 7' is, in effect, a simulation of fixed-length
lists, with the pairing operator (comma) playing the role of cons and the constant Bin
playing the role of nil. Using binary numerals defined by 7, the valuation function
val still retains its dependent type but is now defined as

define val:[n:nat] >T n-—>N(21n) by

val 0 w=0]|
val m” (b, u) = (21 m)xb+val m u
end.

A straightforward generalization of the function 7" allows the base of a numeral to
be parametrized as well so that a numeric literal to any positive base may easily be
expressed. For instance, it allows the number 1992 to be written as 1, 9, 9, 2, Base,,
of type Tiyy, 4

In some digital systems, numbers are represented in a hybrid code called binary
coded decimal (BcD). A representation for such numerals is easily defined. First
introduce a type to represent Bcp digits:

digit ={d:T 4|val,d < 10}
Phil. Trans. R. Soc. Lond. A (1992)
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Dependent types and formal synthesis 127
together with the definitions for the ten digits zero, ..., nine:
zero=0, 0,0, 0, Bin; ... mine=1, 0, 0, 1, Bin
Then (following a similar scheme to that used for the definition of 7') introduce:

datatype bed = BCD;
define 77" :nat - U0 by
TT 0= bed|
T n =digitxTT n
end.

A typical Bcp-encoded numeral, for instance 1992, is then expressible as one, nine,
nine, two, BCD of type TT).

A closely related version of the parametrized type 77" may be defined for
representing (as a tuple of tuples) an n by m array of bits; a typical use for such a type
is for defining the contents of a read-only memory.

(¢) Specifications of digital systems

We now move on to illustrate the role that dependent types can play in specifying
the behaviour or the structure of digital systems. Throughout, we will be using the
convention that predicates are used to describe specifications of digital devices or
systems. The value (or extension) of the predicate will describe a device’s (steady-
state) behaviour by characterizing the allowable combinations of signals that can
oceur at its ports. In addition, the form (or intension) of the predicate will sometimes
be used to indicate the structure of the device.

We begin with a simple example, that of a multiplexer, a device that is used to
select one signal from one of its 2" input signals. Its behaviour may be specified by
the parametrized predicate:

multiplexer:[n:nat]—>W nx W (21 n) x bit - bool
defined by
multiplexer,, (sel, inputs, output) = output = inputs (val, sel)

Here, sel represents the n-bit selector word, inputs represents the 2" input signals and
output represents the output signal. The type and behavioural predicate for a
particular sized multiplexer are obtained by application of the function. For
example, the type of the specification for a 16-way multiplexer is

multiplexer,: W 4 x W 16 x bit — bool.

(d) Binary addition

A wide range of arithmetic operations may be implemented by one-dimensional
iteratively structured digital systems. We take as a simple example the ordinary
parallel binary adder and consider specifications of its behaviour at different levels
of abstraction.

First consider the specification of an adder viewed at the abstract level. Notice
that, even at this level, the device is seen, not as performing addition on the (infinite)
type nat, but rather as performing addition modulo m on the bounded type N m (for
some positive m). We assume that the adder (see figure 1a) has two input ports (@ and

Phil. Trans. R. Soc. Lond. A (1992)
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128 F. K. Hanna and N. Daeche
(@) \:uNm /b:N m ®) \A:Wn/B:Wn
< adderp, {e— <— adder _spec, t<—
y: bit : bit y: bit z: bit

[ [
© \;4,,_1 /13,,_1 \41 /Bl\fo /Bo

<— adder _cell fa— oot < adder_cell je— adder _cell je—
y: bit x: bit

1Cn—l lCl lCo

Figure 1. () Addition viewed at the abstract level. (b) Addition viewed at the binary-numeral
level of abstraction. (¢) Implementation of a binary adder.

b), an output port (c) and carry-in and carry-out ports (x and y). Its desired
behaviour is described by the parametrized predicate

adder: [m:nat*]—>N mxN mxN m x bit x bit - bool
defined by

adder,, (a, b, ¢, x, y) = (y, ¢) = (a+b+x)//m
(that is, the main output ¢ is the sum modulo m of the inputs, and the carry output
is the sum divided by m).

Next consider the specification of the adder seen at the ‘binary numeral’ level of
abstraction (figure 1b). Now the type of its operands is parametrized by the word-
length n and the function val, is used as the abstraction function. Its desired
behaviour is described by the parametrized predicate

adder_spec: [n:nat] W nx W nx W nx bit X bit - bool
defined by
adder_spec, (A, B, C, z, y) = adder .,y (val, A, val, B, val, C, x, y).

This specification may be realized (figure 1¢) by an iterative structure consisting
of n adder-cells serially composed. The behaviour of this structure is described by the
predicate

adder_impl: [n:nat]>W nx W nx W nxbitx bit - bool
defined by
adder_impl, (A, B, C, x, y) =
JX:W n'.
(Xo=a) A (X, =y) A
Vi:N n. adder_cell (4,, B;, C;, X;, X,).
(The 3-quantified variable X represents the internal (n+ 1)-length word of carry

signals and the V-quantified variable ¢ is used to index over the words 4, B, C' and
X.)

Phil. Trans. R. Soc. Lond. A (1992)
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‘N n ‘N n

— R —
it " 0t

Figure 2. Specification R, of a device having an arbitrary number of inputs and outputs, each
of type N n, and a carry-in and carry-out each of type ¢.

The full-adder cell used in the above definition is described by the predicate
adder_cell : bit x bit x bit x bit x bit — bool
nicely defined by
adder_cell (a, b, ¢, x, y) = (y, ¢) = (a+b+x)//2.

Finally, the criterion expressing the correctness of the implementation relative to
the specification may be expressed as

Vn:nat; A, B, C:W n; x, y:bit.
adder_impl, (4, B, C, x, y) = adder_spec, (4, B, C, x, y)

or, very much more concisely, as Vn:nat. adder_impl, 2 adder_spec,, if the operator
3 (‘is at least as strong as’) has been defined.

One rather interesting aspect of the above set of definitions is that the predicate
for the behaviour of an individual adder-cell can be expressed in terms of that for the
overall adder. The relation between the two predicates is simply adder_cell = adder,.

An alternative way of describing this correspondence is to say that a realization of
the (abstract) specification adder,,,, may (for any value of n) be obtained by
composing n instances of the specification adder, and viewing the result through the
abstraction function val,. In fact, it is not difficult to see that this result generalizes
from base-2 representation to base-b ones. That is, for any word-length » and any
positive base b, the specification adder,.,, may be realized by composing n instances
of the adder-cell specification adder_cell, and interpreting the operands as numerals
to base-b.

(e) Factorization theorem

The obvious question posed by the above observation is whether it can be
generalized still further. To explore this, consider generalizing the adder relation to
an arbitrary parametrized relation R that takes as its arguments a number n and
then some arbitrary (but fixed) number of operands of type N % (each representing
an input or an output signal) and two operands of an arbitrary type ¢ (representing
a generalized ‘carry’ signal), thus

R:[n:nat] >N nx ... xN nxtxt—>bool.

The question (see figure 2) is then whether, given a particular relation R, the abstract
specification R, can be realized at a concrete level (using length-n, base-m
numerals) by the serial composition of » instances of the relation R, for any n and
any positive m. If it can be, then we say that R is iteratively implementable.

On inspection, many common arithmetic operations are found to be iteratively
implementable, including : addition and subtraction (and, as special cases, increment
and decrement), comparison and subrange inclusion, multiplication by a constant,
division by a constant and remainder modulo a constant. However, not all operations

Phil. Trans. R. Soc. Lond. A (1992)
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(a) |0:N 1
e L e
Noxm
() // (©)
N m ‘Nn “Noxm
y R n — nxm) [
y:t it & x:t ﬁ R( ) Tt

Tigure 3. A parametrized specification R is said to be proper if R, behaves as shown in (a). It is said
to be factorizable if (for arbitrary n, m:nat*) the composed relations R, and R, shown in (b) behave
equivalently to the relation R, shown in (c).

share this property; for example, squaring does not. We have, however, found two
simple properties (termed proper and factorizable) and have established :

Factorization theorem. 4 parametrized relation which is both proper and factorizable
15 iteratively implementable.

A diagrammatic definition of these two properties is shown in figure 3. A formal
statement of the theorem and notes on the computational checking of its proof may
be found in Hanna et al. (1989a).

The factorization theorem is useful from two points of view. Firstly, it offers a
general design method for synthesizing iterative implementations of arithmetic
operations. Secondly, it greatly simplifies the task of formally verifying the
correctness of such an implementation by dividing the task into two separate
components. On the one hand is a proof of the factorization theorem itself; because
this is independent of the (possibly intricate) details of any particular relation R it
is relatively simple to establish. Further, because it is a general result, it only ever
has to be proven once. Then, on the other hand, is a proof that the particular relation
R being considered is proper and factorizable. Because this does not involve any
aspects of the iterative numerical representation (for example, binary-coded decimal
numerals), it too is relatively simple.

(f) Example

As a simple illustration of the application of the factorization theorem, consider
the design of an iterative structure to extract the remainder modulo m of a number.
The abstract specification of the operation (on numbers in the subrange N n) is
described by the parametrized predicate

modulo: [m:nat™] x [n:nat] >N nxXN m XN m—bool
defined by
modulo, . (@, x,y) = =mod (nXy+a) m.

This relation can be shown to be both proper and factorizable, and hence can be
asserted to be iteratively implementable. Now suppose that an implementation of
this operation is required for determining remainder modulo 3 on binary numerals.
Given the above result, it can straightaway be asserted (see figure 4) that an
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A,_1: bit Ag: bit
y: N—3>1 cell e = - = — cell LN 3

Figure 4. Implementation of the operation remainder modulo 3 for binary numerals.

implementation can be realized by serially composing £ instances of the relation cell
of type

cell: bit xN 3 xN 3—bool
defined by cell = modulo 3 2 or, equivalently stated:
cell (a,z,y) =x=mod (2xy+a) 3

and it can be asserted that the resultant structure will (for numerals of length k)
satisfy the relation modulo 4,4, when viewed through the abstraction function val,.

(g) Discussion

The type system examined in this paper is derived from the dependent types of
Martin-Lof’s I'TT. The natural alternative to this kind of type system is one based
on Milner polymorphism. In this section, we explore the relative merits of these two
type systems in the context of a design logic intended for reasoning about digital
hardware.

In polymorphic type systems, type expressions may contain type variables and
thus represent families of types. Every well-typed term possesses a unique most
general type (called its principal type) and the type-checking problem is decidable.
By contrast, with a dependent type system, terms do not possess unique types and
the type-checking problem is undecidable.

If a design logic is being used as no more than a semi-formal notation for writing
specifications then whether or not type checking is decidable is not a matter of any
consequence. With either kind of system, the well-typing of terms is almost always
evident by inspection. However, if the terms and theorems of a design logic are to be
subjected to computational checking —as almost all serious applications of
verification technology demand — then the distinction is a significant one. On the one
hand, the user of a polymorphically typed logic need have no concern with type-
checking (since it can be dealt with algorithmically) and is free to concentrate on the
central activity of theorem proving. On the other hand, the user of a dependently
typed logic is forced to deal explicitly with the type-checking problem. Typically this
involves coercing the types of terms by rewriting their types with equivalent types
or by restricting their types to subtypes. An example will illustrate this. Suppose
that the typed term 1:bit is required (for instance, as an argument for the predicate
adder_cell defined earlier). By construction, the term 1 has the type nat. To show that
it can be coerced to have the type bit involves the following pattern of inferences:

1l:inat H1<2
1:{n nat|n < 2}
1:N 2
1:but

=N n={m:nat|m < n}

Fbit =N 2

(that is, using the theorem 1 < 2 the term 1:nat is first injected into the subtype
{n:nat|n < 2} and then this subtype is rewritten, first as N 2 and then as bif).
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The difference in the amount of labour required to guide computational theorem
proving with either polymorphic or dependent types turns out, however, not to be
as great as the above example may suggest, for the following two reasons.

1. Most of the deduction carried out during type-checking with dependent types
tends to be required at some stage or other when using either type system. For
example, if a term like div m n occurs in a proof, it is likely that, somewhere, the
assertion x> 0 will be required. With dependent types, it will be required at the
start for type-checking (to establish the typing n:nat®), whereas with polymorphic
types it will almost certainly be required later on, in order to discharge a hypothesis
n > 0 occurring in the definition of div.

2. Just as the routine aspects of deduction can be partly automated by using goal-
directed methods and domain-specific heuristics (‘tactics’), so also can the routine
aspects of type-checking be partly automated. For example, tactics can be written
to encapsulate the patterns of inference (such as that shown above) required to type
check terms whose types involve either of the type-constructing functions N and W
that have figured extensively in this paper.

aiven that the loss of fully decidable type-checking is the price paid for the use of
dependent types, what compensating advantages do such types confer? We can
summarize these advantages in three broad groups.

Firstly, dependent types and subtypes allow types to be formulated for a given
specification that encompass exactly the sets of values required. This allows the
bounded types (for instance, bit) characteristic of digital hardware to be represented
directly in their natural form. Further, it allows functions (for example, div) to be
defined that are both total on their domain and yet do not contain redundant or
arbitrary information. In turn, this leads to specifications with useful mathematical
properties (for example, numerals being isomorphic to numbers).

Secondly, dependent types provide a more structured (and thus higher level)
notation, by virtue of both the value and the type of a term carrying useful
information. For example, the type alone of the term wmod n m carries the
information that its value is bounded by the subtype N m. In addition (a point not
explored in this paper), dependent product types provide an effective means of
defining abstract data types (for instance, integer or bounded stack).

Thirdly, dependent types allow the types of specifications to be parametrized not
only with types (as do polymorphic type systems) but also with values. This allows
generic specifications to be defined (for example, those involving n-digit numerals to
base ). Not only do such generic specifications provide an economical way of
covering many specific instances but, by virtue of having abstracted away from the
irrelevant detail of particular instances, they can often lead to extra insight. For
example, the factorization theorem discussed earlier arose naturally from a
generalization of this kind.

4. Formal synthesis

The sheer labour involved in carrying through computationally checked formal
verification (irrespective of the particular species of logic used) is arguably the only
factor limiting its widespread industrial application. Designs that can readily be seen
to be correct by inspection can often take days or weeks of a skilled designer’s time
to computationally verify.

There are two reasons that may be discerned for this immense disparity. One is due
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to the difference (the ‘semantic gap’) between the conceptual, high level at which the
human designer reasons as compared with the very low level at which the primitive
rules of inference of a design logic are framed. The use of goal-directed theorem
proving supported by extensive sets of high-level, domain-specific tactics can go
some way towards narrowing this gap. Additionally, the enhanced expressiveness
that dependent types allow can contribute to higher-level specifications and to more
generic patterns of inference.

The second reason for the disparity is due to the lack of effective sharing of
information between the activities of design and of verification. While some aspects
(for example, the choice of representations for abstract types internal to a design) of
an implementation may be essentially arbitrary, for others the designer will have
well-defined reasons for believing that they imply the correctness of the im-
plementation. Either way, if design and verification are carried out separately, then
the verifier will have to rediscover reasons for believing the design to be correct and
then, laboriously, communicate these to the verification system. It is these
observations that have motivated the development of an approach, named formal
synthesis, in which the activities of behavioural synthesis and formal verification are
combined.

(@) Approach

The formal synthesis approach (Hanna et al. 1989b) is closely based on the goal-
directed methods introduced in the Edinburgh LCF theorem-prover (Gordon et al.
1979). The process is a recursive one; the designer starts at the top level with a
behavioural specification ¢ of the desired system and with the two-fold goal of
determining a specification i for a realizable implementation together with a proof
4 = ¢ of its correctness. To achieve this goal, the designer recursively selects from
a set of functions known as techniques ; these play an analogous role to those of tactics
in theorem proving. Each technique embodies a particular design step and comprises
two parts: one (the subgoaling function) that generates a set of subgoals from the
original goal and the other (the validating function) that takes a corresponding set
of achieved subgoals and uses them to achieve the original goal. The subgoals that are
generated may be either behavioural specifications (to which technique will later be
applied to realize them) or propositions (to which tactics will later be applied to
establish them as theorems).

(b) Techniques

The techniques used for formal synthesis are of many differing kinds. Basic,
however, to any application is a set of general purpose techniques that embody
simple design steps such as: splitting a specification containing a conjunction into
two separate specifications, rewriting or strengthening a specification (either by
using an existing theorem or by generating an appropriate theorem subgoal), or
stripping an existential quantifier from a specification by introducing an internal
signal. Techniques like these are analogous to the general purpose tactics (such as
generalize or rewrite) used in theorem proving.

Many specifications involve abstract types which must, during the design process,
be replaced by more concrete types; we term this process elaboration, the inverse of
abstraction. There are three contexts in which elaboration occurs.

1. There is elaboration of an abstract type that is local (i.e. internal) to a
specification. Here, the technique can select an arbitrary representation; for
instance, it may represent the 2" elements of an enumerated set by successive n-bit
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binary numerals. The fact that the particular representation and abstraction
function chosen by the subgoaling function of the technique is directly available to
the validating function greatly reduces the need for further interaction with the
designer.

2. There is elaboration of an abstract type that is global to the specification but
its representation is free to be decided. This case is similar to the first one except that
the theorem that is returned by the validating function now contains the chosen
representation and abstraction function. An example of this is where the instruction
set of a microprocessor that is to be designed is only specified abstractly (for instance,
as datatype instr = nop |lda|addr|...) and the designer is free to choose the binary
codes for the instruction set.

3. There is elaboration of an abstract type that is global to the specification but
its representation is defined in advance. An instance of this is in designing a
microprocessor that is to be binary-code compatible with an existing model.

Many aspects of digital design can be defined algorithmically and hence are natural
candidates for techniques. There are two approaches that may be adopted,
corresponding to opaque or transparent techniques. With opaque techniques, any
synthesis method may be used to generate a design and then, by quite independent
methods, it correctness is established. A simple instance of this is where an
exhaustive search algorithm is used to determine an optimal NAND-gate
combinational circuit which is then verified by case analysis. By contrast, with
transparent techniques, the synthesis algorithm that is used is lifted so that, as each
step is undertaken, it carries out the corresponding validation. A simple instance of
this is where a combinational circuit is being optimized by using propositional
tautologies to eliminate redundant components.

(¢) Design trees

Although it is possible for a designer to carry out formal synthesis by directly
accessing techniques and tactics (by programming at the meta language level) it is,
in practice, desirable to provide a high-level user interface, a goal-directed editor.
Interestingly, because of the close similarity of formal synthesis to goal-directed
theorem proving, such an editor function can be written polymorphically and
specialized to either task by providing (as an argument to the function) either a
library of techniques or one of tactics.

The act of the designer selecting techniques (and thus generating sets of subgoals)
induces the generation of a tree, termed the design tree, whose arcs are labelled with
design or theorem goals, and whose nodes are labelled with techniques or tactics. The
designer has considerable freedom in deciding in which order to create the nodes of
this tree. For instance, they may be created in a prudent order (proofs first, then
designs), in an exploratory order (designs first, then proofs), or even in a reckless order
(designs but no proofs). In a practical situation, where different aspects of a design
tend to be more or less critical, or more or less obviously correct, this choice of order
is a valuable freedom to have. The design tree itself when complete provides a
permanent record, not only of a completed design, but also of the process of its
creation and a proof of its correctness.

It is a pleasure to acknowledge the contribution of Dr Mark Longley to the development of the
formal synthesis method described here, and of Dr Gareth Howells to the development of a
reference implementation of Veritas-90 in the functional programming language Haskell.
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The SML implementation of the Veritas-90 theorem prover was carried out with sponsorship
from International Computers Ltd, from Program Validation Ltd and from the U.K. Science and
Engineering Research Council under Grant GR/F/3668.
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